Ordered multiplicity lists for eigenvalues of symmetric matrices whose graph is a linear tree
نویسندگان
چکیده
We consider the class of trees for which all vertices of degree at least 3 lie on a single induced path of the tree. For such trees, a new superposition principle is proposed to generate all possible orderedmultiplicity lists for the eigenvalues of symmetric (Hermitian)matrices whose graph is such a tree. It is shown that no multiplicity lists other than these can occur and that for two subclasses all such lists do occur. Important contrasts with trees outside the class are given, and it is shown that several prior conjectures about multiplicity lists, including the Degree Conjecture, follow from our superposition principle. © 2014 Elsevier B.V. All rights reserved.
منابع مشابه
ar X iv : m at h / 05 08 26 5 v 1 [ m at h . C O ] 1 5 A ug 2 00 5 Smith Normal Form and Acyclic Matrices
An approach, based on the Smith Normal Form, is introduced to study the spectra of symmetric matrices with a given graph. The approach serves well to explain how the path cover number (resp. diameter of a tree T) is related to the maximum multiplicity occurring for an eigenvalue of a symmetric matrix whose graph is T (resp. the minimum number q(T) of distinct eigenvalues over the symmetric matr...
متن کاملSmith Normal Form and acyclic matrices
An approach, based on the Smith Normal Form, is introduced to study the spectra of symmetric matrices with a given graph. The approach serves well to explain how the path cover number (resp. diameter of a tree T ) is related to the maximal multiplicity MaxMult(T ) occurring for an eigenvalue of a symmetric matrix whose graph is T (resp. the minimal number q(T ) of distinct eigenvalues over the ...
متن کاملInverse eigenvalue problems and lists of multiplicities of eigenvalues for matrices whose graph is a tree: the case of generalized stars and double generalized stars
We characterize the possible lists of ordered multiplicities among matrices whose graph is a generalized star (a tree in which at most one vertex has degree greater than 2) or a double generalized star. Here, the inverse eigenvalue problem for symmetric matrices whose graph is a generalized star is settled. The answer is consistent with a conjecture that determination of the possible ordered mu...
متن کاملRational realization of maximum eigenvalue multiplicity of symmetric tree sign patterns
Abstract. A sign pattern is a matrix whose entries are elements of {+,−, 0}; it describes the set of real matrices whose entries have the signs in the pattern. A graph (that allows loops but not multiple edges) describes the set of symmetric matrices having a zero-nonzero pattern of entries determined by the absence or presence of edges in the graph. DeAlba et al. [3] gave algorithms for the co...
متن کاملThe Graphs for which the Maximum Multiplicity of an Eigenvalue is Two
Characterized are all simple undirected graphs G such that any real symmetric matrix that has graph G has no eigenvalues of multiplicity more than 2. All such graphs are partial 2-trees (and this follows from a result for rather general fields), but only certain partial 2-trees guarantee maximum multiplicity 2. Among partial linear 2-trees, they are only those whose vertices can be covered by t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Discrete Mathematics
دوره 333 شماره
صفحات -
تاریخ انتشار 2014